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On the Korteweg-de Vries equation for a 
gradually varying channel 

By JOHN W.MILES 
Institute of Geophysics and Planetary Physics, University of California, La Jolla 

(Received 13 March 1978 and in revised form 25 October 1978) 

Two integral invariants of Shuto’s (1974) generalization of the Korteweg-de Vries 
equation for a unidirectional wave in a channel of gradually varying breadth b and 
depth d are derived. The second-order (in amplitude) invariant measures energy, as 
expected, but the first-order invariant measures mass divided by bid&; accordingly, 
mass is conserved only if either the mean free-surface displacement vanishes or bdt is 
constant. This difficulty is associated with the reflected wave that is excited by the 
channel variation but neglected in the KdV approximation. The total mass flux is 
resolved into a primary (KdV) flux and a residual flux that is proportional to the mean 
displacement of the primary wave. The reflected wave associated with the residual 
flux is constructed by neglecting both nonlinearity and dispersion (even though both 
are significant for the primary wave). The results are applied to a slowly varying cnoidal 
wave, which is fully determined by conservation of mass and energy and the known 
results for a uniform channel, and to a slowly varying solitary wave, for which mass is 
not conserved and both trailing and reflected residuals are excited. The development 
of the Boussinesq equations for a gradually varying channel and their reduction to 
Shuto’s equation are sketched in an appendix. 

1. Introduction 
The free-surface displacement ~ ( s ,  x) of a weakly nonlinear, weakly dispersive, 

unidirectional wave in a channel of gradually varying breadth b ( x )  and depth d ( x )  
satisfies the generalized Korteweg-de Vries (KdV) equation (Shuto 1974)t 

(1.1) 4(d2/c3) qsSs + 3(cd)-l 7ys + 27, + (Mc)  7 = 0, 

where s =I%- t (c2 e gd), 

A is a logarithmic differentiation operator, such that 

A f ( x )  = (d/dx)logf, (1.3) 

for any function f (x), and subscripts imply partial differentiation. [Shuto derives ( 1 . 1 )  
directly from the equations of motion through a perturbation analysis. I sketch an 
alternative derivation, starting from the two-dimensional Boussinesq equations, in 

t The generalized KdV equation (1 .1 )  also is valid for axisymmetric wave propagation if x is 
taken to be the cylindrical radius and b z (Miles 1978) and is relevant for geometrical-optics 
approximations of Whitham’s type in the Boussinesq regime (cf. Ostrovskiy & Shrira 1976; Miles 
1977 a). 
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the appendix.] The implicit scaling restrictions for a wave of amplitude a and charac- 
teristic length 1 are 

where B is an appropriate expansion parameter (e.g. the maximum value of a l d ) .  
I consider here the implications of the integral invariants associated with (1.1). There 
are two such invariants, of first and second order in the amplitude; the latter measures 
energy, as expected, but the former measures mass only if b d )  is constant (see 5 2).  It 
follows that the solutions of (1 .  I )  conserve energy but do not, in general, conserve mass. 
[If bd: is constant, the transformation q* = d-2.rl, x* = f & d x  reduces (1.1) to the KdV 
equation, which admits an infinite number of integral invariants; nevertheless, its 
solutions do not conserve mass.] 

The invocation of energy invariance in the present context goes back to Boussinesq 
(1872) and, in a closely related context, to Rayleigh’s (1876) derivation of Green’s law 
for long waves of small amplitude a and speed c = (gd ) ) :  

a l d ,  d2/12, lAb ,  1Ad = O(B)  (8 -+ 0) ,  (1.4) 

a cc b-td-a. (1.5) 

[Green’s original derivation of (1.5) follows from the neglect of the first two terms, i.e. 
of dispersion and nonlinearity, in (1.1), which then admits the general solution 
y = ( b c ) - t f ( s ) ,  which implies (1.5) .] Curiously, neither Rayleigh nor Lamb (1932, 5 185) 
remarks that the invariance of energy, which is proportional to a2bc in the Green’s-law 
regime, is inconsistent with the invariance of mass, which is proportional to abc, unless 
a, and therefore bdk, is constant. This difficulty, which was noticed by Boussinesq 
(1872) for a solitary wave in a channel of varying depth, is a consequence of the implicit 
neglect of the weak reflexion that accompanies the gradual variation of the channel: 
the reflected energy is of higher order in some appropriate measure of the channel 
variation and therefare has no significant effect on the wave, whereas the reflected mass 
is of first order and has a cumulative effect. The difficulty may be avoided for a wave 
that is either periodic (see 3 3) or of compact support simply by choosing a horizontal 
reference plane such‘ that the mean value of the free-surface displacement vanishes 
identically, but this strategem fails for an aperiodic disturbance of indefinite extent 
such as a solitary wave (see 5 4). 

2. Mass, momentum and energy 
I assume that q either vanishes in the limits s + f 00 or is periodic but, for sim- 

The vertically averaged horizontal velocity in the wave may be approximated by 
plicity, display explicit, general results only for the former case. 

(but see below) 

whilst the vertical velocity is O(s4u). The mass, momentum and energy (note that 
d u 2  = gV2 and d x  = cds) of the wave therefore are given by 

u = c W d )  + O ( 4 ,  (2.1) 

W W 

M = pbcJ  yds,  A= p b c d I W  u d s  = Mc, € = pgbc! q z d s ,  ( 2 . 2 ~ )  b ,c )  

BT for a wave of 

- m  - m  - W  

within 1 + O ( E ) .  The limits of integration may be replaced by 
period T. 
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Multiplication of ( 1 . 1 )  by +(bc)+ and bcy, respectively, followed by integration over 
--oo < s < 03 on the assumption that y, ys and yss vanish in the limits, yields the 
integral invariants 

m 

I = (bc)d-/ y d s ,  J = (2 .3a ,  b )  
--P) 

[Johnson (1973) gives the equivalents of I and J for constant breadth but identifies 
them with mass and momentum, respectively.] It follows that & = pgJ is conserved. 
On the other hand, 

M = pI(bc)*,  A= pl(bc3)*, (2 .4a ,  b )  

so that, except for special combinations of b and d,  M and A are conserved only if 

v d s  = 0 .  I”, 
Non-conservation of momentum may be due a t  least partially to the horizontal thrust 
exerted on the fluid by the bottom and walls of the channel, but the change in M (and, 
in general, part of the change in A) must be compensated by a reflected wave that is 
neglected in the preceding formulation. 

Mass  balance 

I now examine the mass balance in more detail, starting from the continuity equation 
for the volumetric flux in the channel in the formi 

‘(2.5) 

It is expedient to resolve the integral into two parts through the substitution 

vt = (a@) ,  = - (ay/w, = - c { ( a y / w F -  (a?l/ax)sI, (2.6) 

where s is given by ( 1  2). Integration by parts then yields 

- I I b c ( a y / i k ) t d z  = bcy + (bc)’ vdx ( 2 . 7 ~ )  

(where the prime indicates d / d x )  and, after the substitution of ( @ / 8 ~ ) ~  from ( 1 . 1 )  and 
of dx  = cds, 

/: 

= Q(bd2/c)rss+ f ( b c / d ) y 2 + ~ , m { Q ( b d z / c ) ’  y,+$(bc/d)’ y2- +(bc)’ y } d x .  (2 .7b )  

The first and second terms in the integrand of (2 .7b )  are uniformly O(s) relative to 
(bc)’ y; accordingly, 

t I have used z as both a variable and a limit of integration in (2.5) and in subsequent integrals 
in which the spatial argument of the integrand is implicitly the variable of integration. 



184 J .  W .  Miles 

is a uniformly valid first approximation to the total volumetric flux, in which Q1 = bcy 
is the primary flux and Q2 is the residual flux. Q2 = O(E&,) if y = O( l), in which domain 
(2.8) is equivalent to  (2. l ) ,  but the integral in Q2 dominates both Q1 and the remaining 
residual terms as x -+ - co if 7 +- 0. 

I proceed on the assumption that 7 4 0 as x -+ & co (in consequence of which the 
remainder of this section does not apply to periodic waves); then the dominant contri- 
butions to  Qz are derived from the neighbourhood ofthe wave, say x = xl(t)  + 0(1), and 

m 

Q - +[(bc)' cI1 [ yds = +I[(c/b) i  (bc)'], = 2 ( x l )  (xl -X << 11, (2.9) 
J - W  

where the subscript 1 implies x = x,. Differentiation of (2.4a) with I constant and 
comparison with (2.9) then confirms the mass balance 

c(dM/dx) = p9.  (2.10) 

Rejlected wave 

The reflected wave that is necessary to compensate for the residual flux 9, but which is 
neglected in the derivation of ( l . l ) ,  may be approximated by assuming that its length 
scale is that  of the channel variation, L 9 I ,  and that its amplitude is small compared 
with that ofthe primary wave. Both nonlinearity and dispersion then may be neglected 
(even though both are important for the primary wave), by virtue of which the 
reflected wave must be of the form (Lamb 1932, $185) 

d x  
s- = 1- + t .  

C 
(2.11 a, b )  

The amplitude a- of 7- at a distance behind the primary wave that is large compared 
with 1 but small compared with L is determined from the facts that  7- recedes from the 
primary wave with the relative speed 241 + O(s)}  and carries the residual flux 9;  it 
follows that a-b( - 2c) = 9 and hence that 

f, = a-(b,c,)t = - &(blcl)-4 22 = - t l[b-l(bc) ']l .  (2.12) 

The reflected wave at any point P in the x, t plane then is determined by (2.1 1 a)  and the 
conservation off along the characteristic s- = constant that  joins P to the trajectory 
of the primary wave a t  the point P- (see figure 1). 

The preceding results suggest that  solutions of ( 1 . 1 )  that  do not satisfy 

7 d s  = 0, 

such as that for a slowly varying solitary wave (see § 4), must be regarded with some 
caution. It appears likely that such solutions cannot be uniformly valid as t t co, but 
this does not exclude the possibility that they are viable approximations in some 
contexts. 
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FIGURE 1 .  The characteristics C* (.s* = constant) projected from a point P in the x, t plane to the 
trajectory C, of thc primary wave. The reflected wave a t  P is obtained by conserving (6c ) ta -  along 
C- from P- and multiplying the result by ( h - 4  [see (2.11) and (2.12)]. The trailing residual a t  P 
(see f 4) is similarly obtained by conserving (6c)&o+ along C,. 

3. Slowly varying cnoidal wave 
The solution of (1.1) for waves of prescribed period T = (A/g)h and length 

1 = CT = (dL)g (3 .1 )  

may be approximated by that for a cnoidal wave in water of constant depth (Lamb 
1932, § 253) in the form 

N = cn2(2KOlm) - (cn2), (cn2) = (m - 1 + (E /K)} /m ,  ( 3 . 3 ~ 4  b )  

&/d3 = = -1-mh' 3 = - @@I, (3 .4 )  

and = [ {2  - m - 3 ( ~ / ~ ) / ( 2 m ) i ( + ) ,  ( 3 . 5 )  

where 6 and x are fast and slow variables, a is a slowly varying amplitude, r /T  is a 
slowly varying phase shift, c / (  1 - y )  is the phase speed (with which an observer must 
move to conserve O), cn(u1m) is an elliptic cosine of slowly varying modulus Jm, K and 
E are complete elliptic integrals in the notation of Abramowitz & Stegun (1965, p. 587)) 
@(m) is the local Ursell parameter, and the restrictions lAb, 1Ad = O ( E )  of $5 1 and 2 
now are replaced by IZAbI, lZRdj < 6 .  

The integral invariants obtained by substituting ( 3 . 2 )  into ( 2 . 3 )  and replacing the 
limits of integration by & frT are 

I = a(bc)* T ( N ) ,  J = a2bcT ( N 2 ) ,  ( 3 . 6 a ,  b )  

where angular brackets imply an average over a unit interval of 6. It follows from (3 .3 )  
that ( N )  = 0 (a necessary condition for the joint conservation of mass and energy 
unless both b and d are constant), whilst ( 3 . 6 b )  implies the constraint 

J L t / ( b d % )  = @'"(N2) z F(m) ,  (3 .7)  

where 9- = (44/33)I i2{2(2-m)EK-3E2-(1  - m ) K 2 } .  (3 .8)  
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FIGURE 2. Loglo.F vs. loglo@, as determined from (3.4) and (3.8) (---), ( 3 . 9 ~ ~ )  (---) and ( 3 . 1 0 ~ ~ )  
( - -  -). The evolution of the amplitude from a prescribed amplitude a, at a particular station, at  
which b = b, and d = do,  is obtained by measuring 

lOg.F-logF, = log(b,d,%) -log (b$)~s.log@-log@~ = log(a/d2) - log(a, /d~)  

from the point determined by@ =@,. 

It follows from (3.7), which determines m(x),  that m is constant if and only if 
bdz = constant, in which special case (3.2)- (3.5) describe an exact similarity solution 
of (1.1). I n  general, ( 3 . 3 ~ )  is the first term in an asymptotic expansion; however, 
approximations of this type (which conserve mass, momentum and energy) are often 
rather better than formal asymptotic considerations would suggest. 

The results (3.4) and (3.7) provide a parametric relation between aLld2 and JL*Ibd# 
that may be graphically represented as a plot of log @ us. log 9 (figure 2). The limiting 
relations 

9 +- @P, a --f ( S J ) ,  b-*(Ld)-* (@ J. 0) (3.9a, b) 

and F N ($@)*, a N iJ3b-8d-l (@ .f co) (3.10a, b) 

intersect a t  @ + 150 (see figure 2).  Moreover, (3.9), which corresponds to Green's law, 
is in error by less than 1 o/o for 4'f < 20, whilst 

2F - (+%)%{l-q*%)-q (@+co), (3.11) 

which neglects only terms of exponentially small order, is in error by less than 1 yo for 
@ > 70. The case of constant depth is especially simple in that the plot of log 9 us. log @ 
is equivalent to - log b us. log a. 
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The present problem has been considered by Ostrovskiy & Pelinovskiy (1975) and 
Shuto (1974) and by Ostrovskiy & Pelinovskiy (1970) and Svendsen & Brink-Kjaer 
(1972) for b = constant. Svendsen & Brink-Kjaer replace the integral in (3.2b) by 
(1 - y )  ( x / l ) ,  which is clearly incorrect; however, this is evidently a minor slip and does 
not affect their results for amplitude, which are more complete than those of Ostrovskiy 
& Pelinovskiy (1970). Shuto allows for the variation of both breadth and depth and 
states a differential equation, his (56), that appears to be analytically intractable 
and is inconsistent with conservation of energy except in the limits % J. 0 and 99 f co, 
in which it is consistent with (3.9) and (3.11); nevertheless, his graphical results are 
not significantly in error over the entire range of @. Ostrovskiy & Pelinovskiy (1975) 
state equivalents of (3.4) and (3.7), but their results are less complete than those 
given here. 

Shuto (1974) compares his results with his own experimental observations and with 
those of Iwagagi & Sakai (1969) for shoaling waves with periods from 1.2 to 6 s on 
uniform slopes of & and &=,. He concludes that linear surface-wave theory (which 
presumably accounts exactly for dispersion) is superior to his cnoidal-wave results for 
@ c 30 and conversely for 92 > 30 and that the latter are good for a/d as large as 0.8. 

Svendsen & Hansen (1978) obtain the next term in the asymptotic expansion of N for 
b = constant and report ‘good agreement’ between predicted and observed wave 
profiles ‘even for . .. waves rather close to breaking’. 

4. Slowly varying solitary wave 

slowly varying solitary wave 
Rescaling 0 in (3.2) and letting % f co (T ,  L f co) with J fixed in (3.3)-(3.7) yields the 

T,I = a(%) sech2 [w(x)  {s - ~(x)}], 

where a = $J3b-$d-1 = aO&-3d-1, (4.2) 

w = (3ga)4 (2d)-1 = w0&+d-#, 

(4.1) 

(4.3) 

8 = b/bo, d = d/do, (4.5a, b )  

the subscript zero implies x = xo, and the constant of integration in (1.2) now is 
implicitly chosen to yield s = 0 at x = x,, and t = 0. The prediction that acc d-l for 
constant b is due to Boussinesq (1872). The prediction that a x  b-3d-I appears to be 
due originally to Saeki, Takagi & Ozaki (1971, cited by Shuto 1974); see also Shuto 
(1974), Ostrovskiy & Pelinovskiy (1975) and Miles (1977 b) .  Shuto (1973) cites experi- 
mental results that support the prediction aoC d-l for constant b and sufficiently small 
d’, but the data are inadequate for a firm delineation of the parametric regime in an 
aid, d’ plane. Experiments by Chang & Melville (unpublished) support the prediction 
aot b-3 for an expanding channel of linearly varying breadth and constant depth. 

Substituting (4.1) into (2.3a) and (2.2a) yields 

I = 2J*g-&b)da = Io&ds, I, = 4($aobo)3c,4dt (4.6a, b) 

and M = 2pJib3d = M,Gfd, No = 4p(5a0)* bod!. ( 4 . 7 ~ )  b) 
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The integral I is conserved if and only if bd% = constant, in which special case (4.1 ) is an 
exact similarity solution of (1 .1) ;  however, this similarity solution does not conserve 
mass. Mass is conserved if and only if bd8 = constant. [The failure of the condition 
( N )  = 0 in the limit f 00 is a consequence of the loss of the displacement 

-a(cn2) N a/K, 

which cancels the mean of acn2(2K8) when integrated over - K  < 2K8 < K . ]  The 
logarithmic derivative of the mass flux may be resolved into components associated 
with the variation of I and with the neglect of the reflected wave according t o  

AM = RI + 4Abc = (&Rb  + % A d )  + ( 4 h b  +$Ad) .  (4.8a, b )  

The fact that I [see (4.6)] is not constant suggests that (4. I )  is not a uniformly valid 
approximation to the solution of (1.1), but rather that  it is the first term in an inner 
expansion. It is relatively straightforward to construct higher-order terms in this 
inner expansion (cf. Johnson 1973; KO & Kuehl 1978)) but the results are ambiguous 
in the absence of a matched outer expansion, the construction of which poses significant 
difficulties (cf. Johnson 1973). An alternative procedure, which avoids some of the 
difficulties associated with matched asymptotic expansions, for improving the approxi- 
mation (4.1) is to construct a perturbation solution of ( I .  1) through a perturbation of 
theinverse-scattering solution of the KdV equation (Karpman & Maslov 1977 ; Kaup & 
Newell 1978). 

Either of the foregoing procedures should render I invariant, but both neglect the 
reflected wave, in consequence of which neither renders M invariant. A simpler, albeit 
more ad hoc, procedure that conserves both I and M is to posit 

7 = 71+17++r-, (4.9) 

where yl is the primary wave given by (4.1); 

y* = (bc)-&f*(s*), s* = T t + j I o  $ (4.10a, 6 ) ;  

(subscripts are vertically ordered), is a right/left-moving secondary wave for which 
the length scale is that of the channel variation [cf. (2.11)]; ql+ q+ is a perturbation 
solution of (4.1) that conserves I ;  y l + y + + y -  is a perturbation solution of the 
Boussinesq equations that conserves M .  Assume, for definiteness, that  the channel is 
uniform in x < x,,. The domain of q+ then is 0 < S+ < 7(x), and 

(4.11) 

where Il is given by (4.6a). It follows that 

f+(~) = -I;/+ = (bc)* a+, (4.12a) 

where U+ = - 4 x 3-%~-Jd&A(bdS) (4.12 b)  

is the amplitude of y+ just behind the primary wave. The secondary wave y+ a t  any 
point P i n  the x, t plane then is determined by (4.10a)+ and the conservation off+ along 
the characteristic s+ = constant that joins P to the point P+ on the trajectory of the 
primary wave (see figure 1) .  The conserved (by yl + y+) value of 1' is I ,  [see (4.6b)).  
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The corresponding calculation of r,- has already been carried out in $ 2 .  Substituting 
I = I,, from (4.6b) into (2.12) and altering the notation to parallel that of (4.12) yields 

(4.13 a, b) 

where a- = - (gao)*d~8-*d~A(bd*) .  ( 4 . 1 3 ~ )  

The amplitude a,+ agrees with that of the ' shelf' calculated from the formulation of 
either KO & Kuehl (1978) or Kaup & Newell (1978) at a point that  is far enough 
behind the primary wave to permit the approximation tanh [w(s  - 7)] = - 1 but 
sufficiently close to permit bc to be approximated by its local value for the primary 
wave. KO & Kuehl's formulation is invalid at more distant points, but Kaup & 
Newell's formulation presumably is uniformly valid in a more extended regime. 

The approximation (4.4) may not provide an adequate approximation to the 
gradually varying phase 7(x), and it therefore is worth noting that the formulations of 
KO & Kuehl and Kaup & Newell both yield the second approximation 

7 = T1 + &(Up' - U i ' ) ,  (4.14) 

where 71, w and w,, are given by (4.3) and (4.4). The corresponding correction to the 
argument of the hyperbolic secant in (4.1) is &( 1 - 8-+d-t), whichmay have a significant 
effect on the trajectory of the peak of the primary wave. 

The results in this section are qualitatively supported by the numerical calculations 
of Maxon & Viecelli ( 1  974) for unidirectional, spherically symmetric solitons. The 
hypotheses of Boussinesq similarity and conservation of energy imply that the 
amplitude of the spherical soliton should vary like 2-4. On applying this prediction to 
the results in their figure 1, I find that it is confirmed within the accuracy of the data. 
They also obtain a 'small residue' that  has only a relatively negligible energy and 
appears to  be the counterpart of r,+. 

This work was partially supported by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE74-23791, and by the Office of Naval Research 
under Contract NOOO14-76-C-0025. The use of linearized characteristics theory to 
calculate the reflected wave r,- was suggested by Peregrine's (1  967) treatment of a 
solitary wave on a uniformly sloping beach. 

Appendix. Boussinesq equations 
The Boussinesq equations for waves in a channel of gradually varying breadth b(x) 

and depth d(x) can be obtained through a straightforward generalization of Whitham's 
(1967) derivation of the Boussinesq equations for two-dimensional waves. His 
Lagrangian density (9) may be shown to be valid for gradually varying depth, and the 
assumption that it is independent of the transverse co-ordinate followed by the 
invocation of the differential metric {dx, b(x) dx} leads to 

g(bd3t,;,,),, + {W + 7) 6.J.T + by, = 0 (A la) 

and tt + &ti + g y  = 0, (A 1 b )  

where t and r, are the velocity potential a t  and the displacement of the free surface, and 
subscripts imply partial differentiation [(A 1 a, b) are the counterparts of Whitham's 



190 J .  W .  Miles 

(1  2) with [ = F ,  4 = h - h, and d = h, in his notation]. The implicit scaling restrictions 
for a wave of amplitude a and length 1 are equivalent to those of (1.4). 

The KdV equation ( 1 . 1 )  may be deduced from (A 1)  by eliminating 4, introducing s 
from (1.2), assuming that < /&I, and then letting tS + gq in the end result. 
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